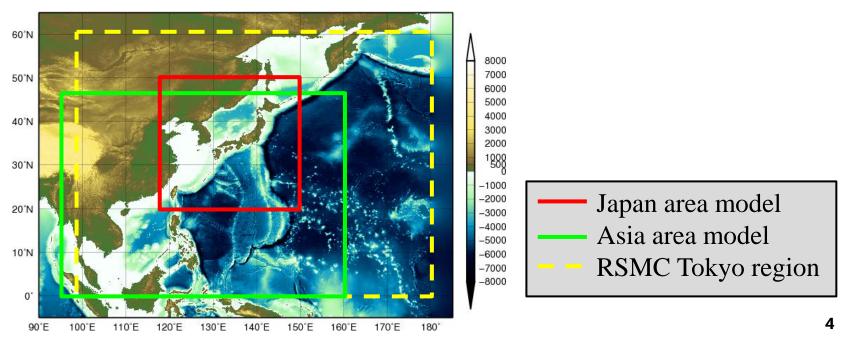
2nd JCOMM Scientific and Technical Symposium on Storm Surges 8-13 November 2015, Key West, Florida, USA

Development of JMA storm surge model

Hiroshi HASEGAWA

(h_hasegawa@met.kishou.go.jp) Office of Marine Prediction, Global Environment and Marine Department Japan Meteorological Agency

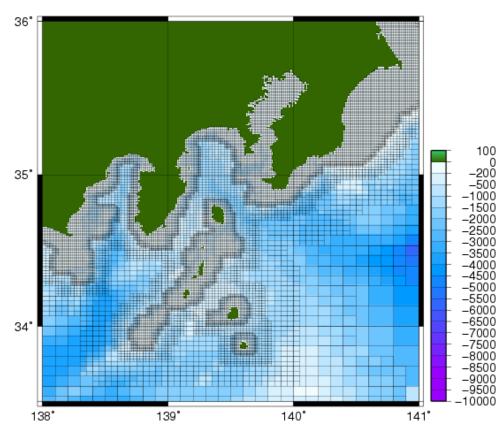

- JMA storm surge model
- Storm Surge Watch Scheme (SSWS)
- Multi-Scenario predictions for SSWS
- Finite Element Method (FEM) model

JMA storm surge model Storm Surge Watch Scheme (SSWS) Multi-Scenario predictions for SSWS Finite Element Method (FEM) model

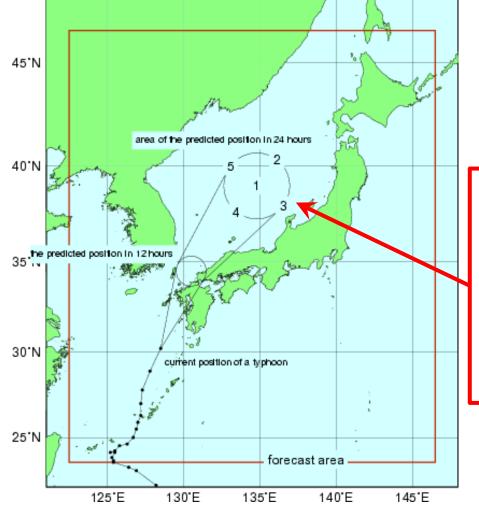
JMA storm surge model

JMA operates two storm surge models.

- 1. Japan area (to issue warning and advisory for Japan)
- 2. Asia area (to provide SSWS information for Typhoon Committee members)


Specifications

	Japan Area	Asia Area
Model	2 dimensional non-linear model	2 dimensional linearalized model
Coordinate	Lat/Lon Cartesian grid Arakawa C-Grid	Lat/Lon Cartesian grid Arakawa C-Grid
Area	20.0N~50.0N, 117.5E~150.0E	0.0N~46.0N, 95.0E~160.0E
Resolution	45''x30''~12'x8 (1km~16km) Adaptive Mesh Refinement (AMR)	2'x2' (~3.7km)
Time step	4 seconds	8 seconds
Forecast range	39 hours	72 hours
Calculation run	8 times/day (3 hourly)	4 times/day (6 hourly)
Initial time	00,03,06,09,12,15,18,21 UTC	00,06,12,18 UTC
Number of prediction courses	In case of typhoons: 6 courses (Center, 4 courses on the forecast circles, NWP predicted course) No typhoon: 1 course (NWP predicted course)	In case of typhoons: 1 course (Center on the forecast circles) No typhoon: 1 course (NWP predicted course)
Forcing	MSM (Meso Scale Model) GPV (5km)	GSM (Global Spectral Model) GPV (20km)
Typhoon bogus	Pressure profile: Fujita (1952) Gradient wind (with inflow angle 30 deg.) Asymmetric component by typhoon movement	


Both models don't include inundation, ocean wave and river water.

Adaptive Mesh Refinement

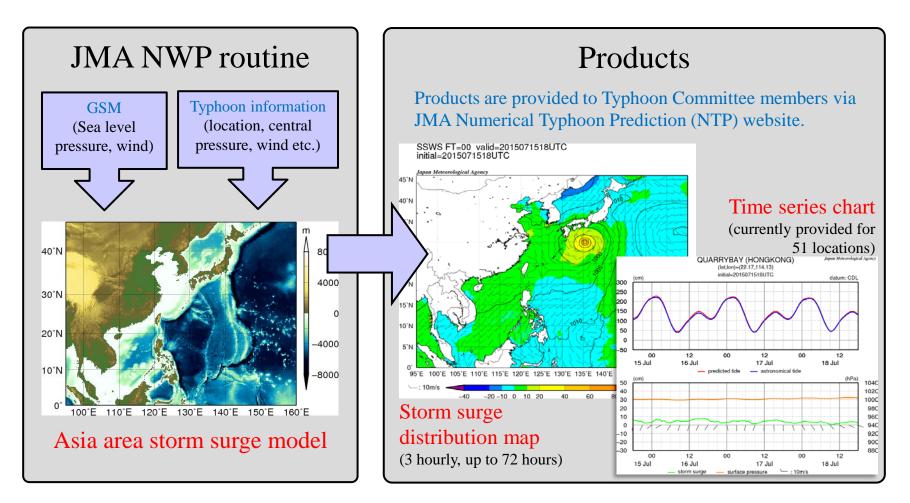
- We are interested in storm surges in beaches, not offshore.
 - □ Shallow water: fine mesh
 - Deep water: coarse mesh
- Fine mesh only in coastal area
 - \Box Number of grid < 1/10
 - Fast calculation

Runs for 5 possible typhoon tracks

- The model runs for 5 possible tropical cyclone tracks to cover a major set of scenarios.
- 1. Center track with highest possibility
- 2. Faster track
- 3. Rightward biased track
- 4. Slower track
- 5. Leftward biased track

(Ensemble prediction system for Japan area storm surge model is being developed.)

JMA storm surge model


Storm Surge Watch Scheme (SSWS)

Multi-Scenario predictions for SSWS Finite Element Method (FEM) model

History

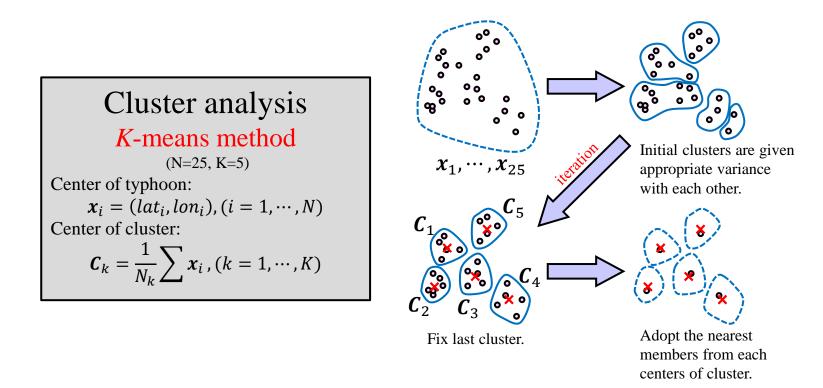
- 2008.6 60th WMO Executive Council (Geneva, 2008.6)
 - □ Request to WMO/SG to facilitate development of Storm Surge Watch Scheme.
- 2008.12 14th Regional Association II (Tashkent)
- 2009.1 41st Typhoon Committee (Chiang Mai)
 - plan for the establishment of a Regional Storm Surge Watch Scheme suitable for the TC region.
- 2010.1 42nd Typhoon Committee (Singapore)
 - request to Members of providing tidal data & bathymetric data to RSMC Tokyo.
 (System development in JMA)
- 2011.6 RSMC Tokyo has started operation to provide storm surge distribution maps through its Numerical Typhoon Prediction (NTP) website.
- 2012.6 RSMC Tokyo has started to provide storm surge time series charts.

Outline of SSWS

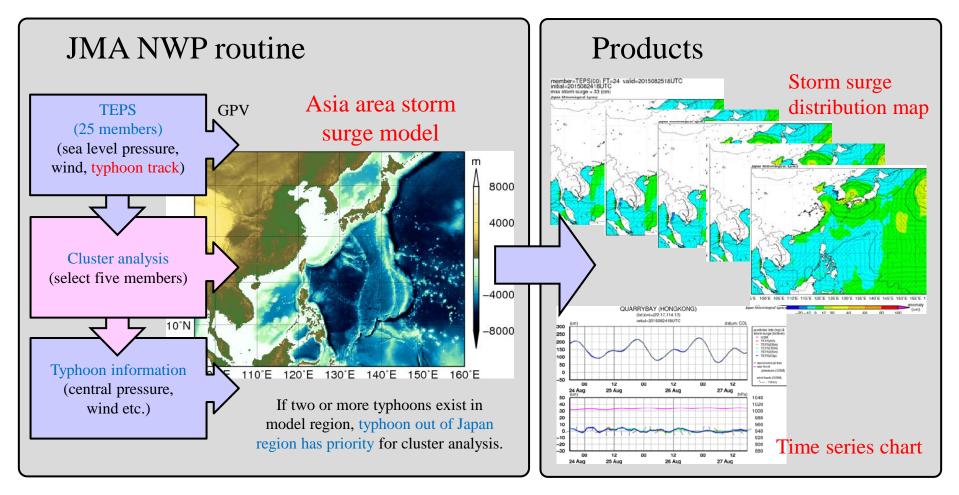
Problem

- Asia area storm surge model is based on one scenario by GSM and bogus.
- Deterministic forecast is insufficient for risk management.
- JMA plans to introduce multi-scenario predictions into the Asia area storm surge model.

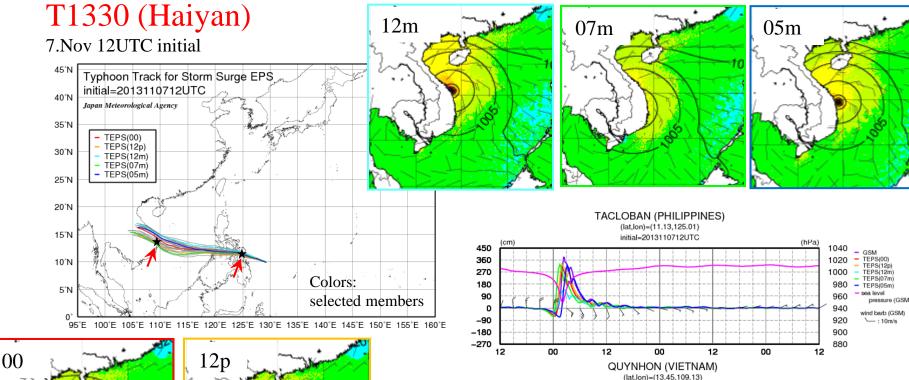
JMA storm surge model
Storm Surge Watch Scheme (SSWS)
Multi-Scenario predictions for SSWS
Finite Element Method (FEM) model


JMA Typhoon EPS

- Multi-Scenario predictions for SSWS are based on JMA Typhoon EPS (TEPS) which was upgraded in 2014.
- JMA TEPS employs a low-resolution version of GSM.


	Previous system	Current System
Ensemble size	11	25
Initial time	00,06,12,18 UTC	
Forecast range	132 hours	
Horizontal resolution	TL319 (~55 km)	TL479(~40 km)

Cluster analysis


- We are planning to select five scenarios from TEPS 25 members. (from restriction of computer resources...)
- Cluster analysis is adopted to determine the scenarios.

Outline of multi-scenario predictions

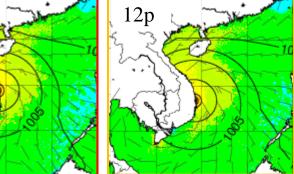
Example

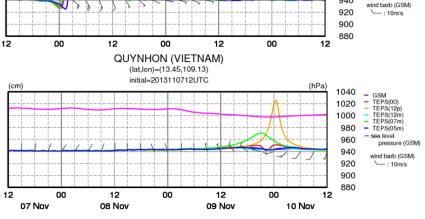
300

240

180

120


60


0

-60

-120

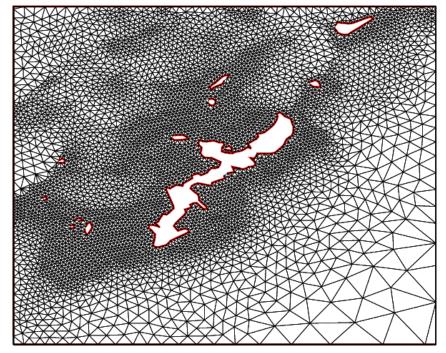
-180

Plans

- Multi-Scenario system and its products are going to be started and issued in 2016.
- In the next JMA super computer system (2018?~), some members going to be added for Probabilistic forecast.

JMA storm surge model
 Storm Surge Watch Scheme (SSWS)
 Multi-Scenario predictions for SSWS

Finite Element Method (FEM) model


Finite Element Method (FEM)

- In FEM, Model region is divided to finite elements. Any forms of element are valid (unstructured grid).
- > FEM is suitable for storm surge calculation.
- JMA is developing FEM storm surge model aiming for practical use in the next JMA super computer system.

Generating unstructured grid

Delaunay triangulation

- Coastal data:
 GSHHG (NOAA)
- Topography data:ETOPO (NOAA)
- Coastal data is modified to target resolution.
- For extremely large area, Delaunay triangulation is adopted for divided small areas, they are combined to one later.

Ex.) Okinawa area Max resolution is 1 minute.

Summary

- JMA operates two storm surge models (Japan area, Asia area).
- In framework of SSWS, products of Asia area model is provided for typhoon committee members.
- Multi-scenario predictions are going to be introduced to Asia area model in 2016.
- JMA is developing also FEM model for next super computer system.